PHYSICAL REVIEW E, VOLUME 64, 036306
Kinematics of small scale anisotropy in turbulence
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A simple, empirically motivated model is proposed to explain the transfer of imposed large scale anisotropy
to small scales in high-Reynolds-number turbulence. Observed power-law scalings of anisotropy metrics are
interpreted as manifestations of power-law scalings governing high-gradient regions resulting from compres-
sional eddy motions. The model is used to interpret the measured moment-order dependencies of the exponents
and amplitudes of odd-order structure functions and derivative moments that vanish in the absence of anisot-

ropy.
DOI: 10.1103/PhysReVvE.64.036306 PACS nunterd7.27.Ak, 47.27.Jv, 47.27.Eq

I. INTRODUCTION processes induce steplike profiles of properties that are sub-
ject to imposed large scale gradieffs. Apparently, local-
The persistence of small scale anisotropy in high-ized episodes of intense mixing homogenize some fluid re-
Reynolds-number turbulence subject to imposed large scaions sufficiently to expel the imposed gradient into the gaps
anisotropy has been demonstrated experimenf4l], and  between regions of intense mixing. The physics and the sta-
various formal approaches to the analysis of this phenomitistics of this mechanism of gradient concentration and am-
enon have been proposkgl4]. The goal of the present study plification are not well understood. This precludes first-
is to propose a simple intuitive picture of the mechanismprinciples analysis of the origin and properties of small scale
causing persistent anisotropy that accounts for some heret@nisotropy.
fore unexplained trends and features indicated by measure- An important feature of observed anisotropy is its con-
ments. formance to scaling. Namely, measures of anisotropy exhibit
To illustrate the physical picture on which the presentpower-law parameter dependencies that imply the absence of
analysis is based, amplification of high moments of propertya distinguished length scale other than the turbulence integral
derivatives due to length scale reduction by turbulent eddiescaleL and a dissipative cutofk. Accordingly, power-law
is considered. Assume an initially linear scalar profile, gra-scalings are assumed in the model proposed here.
dient G, extending a distancé in the gradient direction.
Suppose that a sequence of compressional and rotational mo-
tions converts this profile into a sawtooth shape consisting of Il. MODELING APPROACH

2n+1 segments, each of widit/(2n+1) (thus filling the Nonvanishing odd-order inertial-range structure functions
original intervall), with gradients alternating betweenn(2 514 odd derivative moments at high Reynolds nun{Bes)
+1)G and —(2n+1)G. Then the mean value of thEh ~jngjcate the persistence of anisotropy at scales far bélow
derivative momenttaking the directional derivative parallel pere, these two statistical measures of anisotropy are inter-
to the imposed gradienis [1/(2n+1)][(2n+1)G] for |  preted as manifestations of a single underlying mechanism.
odd. Forj=3, it is clear from this result that length scale = A model of the statistical properties of a one-dimensional
reduction can amplify the chosen measure of small scale anqp) profile of an advected propertyelocity, passive scalar,
isotropy despite the fact that rotational motions that flip theetc) in the direction of the imposed gradient is formulated as
sign of the directional derivative result in sign cancellationfg|iows. As an idealization, the high-gradient regions of the
over most of the domair(in this examplen positive-slope  profile are represented as a collection of individual zones,
contrlputlons are _cancelled by the equal—and—opposne each of which is characterized by a sizeand a property
negative-slope regions. The non-null outcome is due to thgjifferenceA across the zone. The property derivative within
one additional positive-slope region. . the zone is estimated a&/r, which neglects the possible
The example suggests that it may be straightforward t9nfyence of fine structure within the zone.
estimate measures of small scale anisotropy by using well- may be positive or negative, and as indicated by the
established scaling laws of inertial-range turbulence to quanystrative example, the tendency of vortical motions to in-
tify the distribution of scales. However, high moments of q,ce isotropy implies a nearly symmetric distribution Af
property derivatives are sensitive to rare occurrences of exajyes. The asymmetry due to the imposed gradigate
treme length sc_:ale reduc_tlon, S0 |nert|al-ra_nge scaling IaWéssumed positiyeis represented here as a greater number
that govern typical behavior may not contain the needed INgensity of positiveA zones than negativA-zones.

formation. o , o The following simplifying assumptions are introduced.
A further complication is the collective behavior induced fjst  the magnitude oA is taken to be the same for all

by the coupling between advective and dissipative processegigh-gradient zones of size and a dependence

Though dissipative processes are ostensibly irrelevant in the

inertial range, measurements and numerical simulations indi-

cate that turbulence and other multiscale advection-diffusion |A(r)|=CGL(r/L)°h(r/\) (2.1
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is assumed. The exponesntind the coefficienC are model It is assumed that high-gradient zones, as defined here,
parameters is the imposed property gradient, which is an dominate the scaling of the structure functions of interest.
imposed shear in the experiments that are compared to thEhe zone-size subranges<R andr>R are considered in-
model, andh is a cutoff function that vanishes for small dividually.

values of its argument and asymptotes to unity for large val- |t js assumed that any high-gradient zone of sizeR that

ues of its argument. It is therefore included in estimates injg intersected by a sizB-line segment is entirely contained

volving A only whenr of orderA is considered. The dissi- yithin the segment. The velocity difference across the seg-
pation scalex that is applicable to high-gradient zones is NOtment, to leading order in scaling, is the sum of the velocity

the same as the Kolmogorov microscaje(The two scales jitterences across the high-gradient zones contained in the
are compared quantitatively in Sec) JA(L)| is not required segment

:ﬁ efclluv?/erlt_h bre::r?uns?}:‘ ch;i]ltri?ctfelrliveﬁ_hsprec;zgubcrierglct)nbs of For a given zone-size rande,r +dr], the net contribu-
e flow rather Tan e enure Tow. there €ed Not b€ tion to this velocity difference is estimated Aér) times the

equal to unity. Second, if the fraction of the 1D profile that isex ected value of the excess number of posivEenes in
covered by zones in the size ranfger +dr] is denoted (pec . . P
this size range that are contained in the $kzeegment. The

f . (r)dr for positiveA andf _(r)dr for negativeA, then the ol _ .
di+fferencefzf+—f_ is assumed to be non-negative forrll atter quantity isR times the number density (3f(r)dr.

and to obey the scaling This givgs the net_contributionRﬂr)A(r)f(r)dr, yvhich
scales withr asrP*S~1dr. Integration of this quantity over
f(r)~(1/L)(r/L)P (2.2 A<r<R gives a result that is dominated by the large-
(orderR) contribution ifp+s>0 or by the small (order\)
for A\<r<L. contribution if p+s<0. Based on the empirical observation

The Re dependence of will be analyzed in order 10 that D;(R) scales withR rather than a dissipative length
determine the Re dependence of derivative moments. FQicale it is assumed that+s>0. Exponent values deter-
this purpose, an additional modeling assumption is needeghineq empirically in Sec. V are consistent with this assump-
as follows. tion.

_ A time scalet is associated with_ high-gradient zones of It would appear therefore that the subramgeR contrib-
sizer, based on the assumed relation utes a term of orderR/L)!(P*s*1) to the scaling oD;(R).
t=T(r/L)", (2.3 In fact, this is an underestimate. The mean value of the ex-
cess number of positivA-orderR zones contained in a size-
whereT is a large eddy time scale. For a homogeneous shed? segment scales aRf(R)~(R/L)P**. Provided thatR
flow with an imposed velocity gradier®, T is inversely <L andp>—1 (which is required so that ther integral of
proportional toG. The time scald represents the formation f is finite in the limit of vanishing\), this is much less than
time of sizer zones. A balance betweeéand the time scales unity. Therefore a distinction must be made between the in-
of processes that dissipate high-gradient zones is used to &€sequent occurrence of a positive-excess, which is the
timateX in Sec. IV. dominant contribution t@;(R), and the more likely absence

For present purposes, these assumptions define the gragsan excess, in which case the contributionD(R) is
structure and evolution of high-gradient zoné&Some addi- deemed negligible. Accordingly, the<R contribution to
tiona! assumptions_ are introduced in the analyses (_)f st_ructquj(R) is estimated a&\l(R) ~ (R/L)’S times the probability
functions and derivative momenitsThe model, which in-  h5¢ 5 sizeR segment contains a greater number of positive-
volves th_re_e “Uk”OW” exponersq, ands as well as SEV- A orderR zones than negativa-orderR zones(specifically
eral multiplicative coefficients, does not address the d|ff|cultone more, because larger excesses occur with geometrically

present goal is to determine the relationships between the%ecreasmg probabilily This probability scales a& f(R).

parameters and statistical measures of anisotropy, thereby ombining these estimates, the:R contribution toD;(R)

js+p+1 R :
providing a framework for physical interpretation of experi- s four(1d+stfl)be (.)f order R/L) , which dominates
mental results. (R/L)ITP for j>1 andp>—1.

If the sizeR line segment is intersected by a high-gradient
zone of sizer>R, it is assumed that the segment is entirely
contained within the size-zone and that the variation of
The inertial-range scalings of odd-order structure func-2cross the zone is linear. Based on these assumptions, the

tions are analyzed based on the foregoing assumptions. Sp¢elocity  difference  across the siR- segment is

IIl. STRUCTURE FUNCTIONS

cifically, the transverse structure functions (RIMA(r/L). N . .
For r>R, the probability that the sizB- segment inter-
D;(R)=([u(y+R)—u(y)]’) (3.1)  sects(i.e., is contained withina zone whose width is in the

range[r,r+dr] is f . (r)dr for positive A andf_(r)dr for
are considered, whergis the coordinate parallel to the im- negative A. The difference between these probabilities,
posed mean shear ands the velocity component normal to f(r)dr, is taken to be the probability of a net contribution to
y to which the shear is applied. The analysis is likewisethe odd-order structure functions by high-gradient zones in
applicable to structure functions of a passive scalar. the indicated size range.
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The r>R contribution to the scaling oD;(R) is, there- Forg=0, the familiar Taylor-microscale scaling is recov-
fore, estimated to be of ordefk(R/r)JAI(r/L)f(r)dr.  ered. This scaling is not relevant to the present situation due
Based on Egs.(2.1) and (2.2, this is proportional to to the restrictiong>%. The present physical picture is thus
ijé,L(R/r)j(r/L)iS(rlL)p d(r/L). The integral scales fundamentally different from the anisotropy analysis of
as {1[j(s—1)+p+1]}(R/L)I[1—(R/L)IE-DP+1]  For Gonzalez[4], who postulates that the Taylor microscale is
s<1-[(1+p)/j], this gives the scalingR/L)’s*P*1 the the cutoff scale for high-gradient events.
same as obtained for the<R contribution. The exponent  The jth derivative moment is estimated by multiplying
values determined empirically in Sec. V obey this inequalitythe jth power of the derivativeA(r)/r by the measure
for j values of interest. If the inequality is not obeyed, thenf(r)dr of the excess positivé-contribution and integrating
the amplitude falloff with decreasing is so fast that the overa<r<1, giving
integral is dominated by ordér-zone sizes. The assumption
of linear variation ofu across a high-gradient zone, and other
model assumptions, break down at this length scale, so the
model is applicable only if the stated equality is obeyed. ~Owing to the dominance of the dissipation scale contribution

It is concluded that the ranges<R andr>R obey the to the integral, and the influence of the cutoff functiom
same scaling, which is not surprising because both ranges aFdl- (2.1) at that scale, thg dependence of the coefficient of

m]_N)\i(s—l)+p+1~Réi(l—S)—p—l]/(2—q)_ 4.2

dominated by the ordeR-contribution. The scaling Re in this scaling cannot be deduced. As noted in Sec. lll, the
model is valid only ifj(s—1)+p+1<0. .
D;(R)~CI(R/L)is*P*1 (3.2 The normalized moments of interest are=m; /my?. To

_ evaluate these, it is necessary to determine whether the
is thus obtained. Th€! prefactor is obtained for the<Ras  anomalous scaling, Eq4.2), dominates the conventional
well as ther >R contribution, although it was not shown scaling forj=2, which ism,~Re. The conventional scaling
explicitly in the analysis of the case<R. The factorGL dominates ifg<1+p+2s.
appearing in Eq(2.1) is omitted here because it is assumed Evaluation ofp, g, ands based on comparison to measure-
to be absorbed in the normalization wf ments(Sec. V) indicates that the conventional scaling domi-

A key simplification in this analysis is the assumption thatnates, consistent with the measured Re dependenos,.of
all high-gradient zones of given sizehave the same ampli- Therefore, the final result is
tude A, given by Eq.(2.1). The neglected fluctuations & .
for givenr may have significant impact on high-order struc- nj~Rd ~(P+D/2-al+[l/2)(a-25)/2-a], 4.3
ture functions. Implications with regard to comparison of the
model to experimental data are discussed in Sec. V. V. COMPARISON TO MEASUREMENTS
IV. DERIVATIVE MOMENTS The experimental observation that motivates the introduc-
tion of the amplitude factoA is the dependence of the odd-
The Re dependence of odd derivative moments is anarder inertial-range structure-function exponents on moment
lyzed. To introduce Re effects, the dissipative cutoff seale orderj. Equation(3.2) allows linear dependence gnMea-
is estimated by comparing the time scat# Eq. (2.3 to the  surements indicate slower-than-linear increase of the expo-
time scales of processes that may break down or dissipaigents as a function of [1]. The measured departure from
high-gradient zones. Two such processes are considerefhearity may not be statistically significant, but exponents
eddy diffusivity (governed by Kolmogorov scalingind vis-  for even and odd appear to fall on a single curyg], in
cous dissipation. which case the well-established sublinearity for eyeap-
Kolmogorov scaling implies?® dependence of the eddy plies also to odd. The departure from linearity is slight, so
time scale on the eddy size Therefore, eddy breakdown the available odd-order data can be used to determine the
either suppresses the small scale events entiiiety<5) or  model exponents that controls thej dependence of the
is too slow to affect them at alif g>%). The latter is the structure-function exponents. Based on the measgiirelx-
physically interesting case in the present context. The imponent values 1.1, 1.5, and 1.8 fp=3, 5, and 7, respec-
plied constraint,g> 2, is discussed with regard to experi- tively, s=0.2 is a reasonable choice.
mental results in Sec. V. To within experimental precision, measured derivative
In view of the irrelevance of eddy breakdown in the re-moments exhibit linear dependence of the exponent of Re in
gime of interest\ is determined by invoking the diffusive Eq. (4.3) on moment ordejj [1]. Based on the choice
scaling A2~ vt~vT(A/L)% Henceforth, lengths and times =0.2, the value ofq that best matches the measured
are scaled byL and T respectively, so in scaled units, = moment-order dependence is 0.75.
=Re 1, giving With these choicesp can be chosen to match the expo-
nent sequence for either the structure functions or the

A~Re Y2-a), (4.1  derivative-moment Re dependencies. The latter is chosen be-

cause the structure-function analysis involves more signifi-
The singularity atq=2 reflects the absence of a balancecant omissions of physically relevant processes than does the
mechanism folg=2 because length scale reduction outrunsderivative-moment analysis. On this bagisis assigned the
viscous dissipation for all<1. value —0.15. This choice satisfies the conditipa-s>0 in-
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voked in the structure-function analysis in Sec. Ill. possibility that this deviation may be observalgebject to
For these parameter values, the model giRgexponent measurement imprecision and other intermittency mecha-
values —0.52, 0.04, and 0.60 for derivative-moment ordernisms that might cause such a devia}iés an interesting
j=3, 5, and 7, respectively. Exponents representing the déssue for future investigation.
pendence orR, =Re'? are given because the experimental Equation(3.2) implies multiplicative increase of the am-
results are parameterized I®; . The corresponding mea- plitudes of successive odd-order structure functions. Loga-
sured exponent values are0.52, —0.02, and 0.631]. The rithmic plots of measured structure functions, compensated
good agreement reflects the adjustmenp@idq to match by dividing by the power oRR/L corresponding to the ob-
the linear dependence of the exponent sequenge on served scaling, indicate that the ratios of successive ampli-
For these parameter values, the predicted structurgudes are in fact constaft]. In contrast, the data in Figs. 10
function exponents foj=3, 5, and 7 are 1.45, 1.85, and and 11 of{ 1] indicate that the normalized derivative-moment
2.25, respectively. The corresponding measured values agequence;, compensated by the power of Re appearing on
1.1, 1.5, and 1.8. Physical mechanisms omitted from théhe right hand side of Eq4.3), does not increase withby
model that may account for the difference between predictedonstant geometric increments. In the present context, this is
and measured values are discussed in Sec. llljE® and interpreted as an indication of the influence of the cutoff
5, the predicted exponents exceed the vaju@shat corre-  function of Eq.(2.1) on the integration leading to E¢4.2).
spond to inertial-range cascade scaling with no intermittency. Comparison of the model to analogous passive-scalar
The predicted values, therefore, correspond to intermittencproperties would be a useful additional test. The model
that is decreasing rather than increasing with decreasinghould be equally applicable to passive-scalar anisotropy,
length scale. though the numerical values of the scaling exponents and
Clearly, the model is not a quantitatively accurate repre-multiplicative prefactors are not necessarily the same as for
sentation of small scale fluctuation mechanisms. The moddhe velocity statistics. Scalar derivative-moment measure-
may be more accurate in principle for derivative momentgments, which would provide the clearest test of the model,
than for structure functions due to the local nature of thedo not yet provide the needed resolution of high-order Re
former, in contrast to the nonlocal nature of the latter. How-dependencief5].
ever, the structure-function analysis has been used to obtain a Apart from the quantitative results and their evident limi-
quantity that affects the derivative-moment scaling expodations, the main conclusion of this study is that simple scal-
nents, so quantitative inferences based on these exponenitg hypotheses concerning the frequency, intensity, and ra-
are likewise problematic. Quantitative implications of the in- pidity of processes(of unknown dynamical origin that
ferred exponent values, though tentative for this reason, arereate local high-gradient zones can account for the mea-
nevertheless examined in order to provide a baseline for fusured Re scalings of odd-order derivative moments, and pro-
ture investigation and refinement. vide a framework for further investigation of small scale an-
In Sec. IV, it is noted that;> % is required so that eddy isotropy and related intermittency properties of high-Re
breakdown does not suppress the formation of high-gradieritirbulence. There is an evident conceptual linkage between
zones, and|<1+ p+2s is required to match the experimen- the anisotropic character of derivative moments and structure
tally observed scaling af,. For the empirically determined functions, but the complex processes controlling structure-
values ofp ands, this impliesq<1.25. The empirical value function scalings hinder accurate quantification of this link-
g=0.75 obeys these constraints. It is interesting to note thadde.
this value ofq implies A\ ~Re %8, which is smaller than the
Kolmogorov microscale scaling R&™ by the factor
Re %% or R, %!, For experimentally accessibR, values
(order 18), this factor is about one half. The implication is  The author would like to thank Zellman Warhatft for help-
that the experimental conditions permit a detectable degrefil discussions. This research was supported by the Division
of small scale anisotropy with only a slight deviation from of Chemical Sciences, Geosciences, & Biosciences, Office of
Kolmogorov microscale scaling becausés close to5. The  Science, U.S. Department of Energy.
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