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Kinematics of small scale anisotropy in turbulence

Alan R. Kerstein
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~Received 14 May 2001; published 30 August 2001!

A simple, empirically motivated model is proposed to explain the transfer of imposed large scale anisotropy
to small scales in high-Reynolds-number turbulence. Observed power-law scalings of anisotropy metrics are
interpreted as manifestations of power-law scalings governing high-gradient regions resulting from compres-
sional eddy motions. The model is used to interpret the measured moment-order dependencies of the exponents
and amplitudes of odd-order structure functions and derivative moments that vanish in the absence of anisot-
ropy.
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I. INTRODUCTION

The persistence of small scale anisotropy in hig
Reynolds-number turbulence subject to imposed large s
anisotropy has been demonstrated experimentally@1,2#, and
various formal approaches to the analysis of this phen
enon have been proposed@3,4#. The goal of the present stud
is to propose a simple intuitive picture of the mechani
causing persistent anisotropy that accounts for some he
fore unexplained trends and features indicated by meas
ments.

To illustrate the physical picture on which the prese
analysis is based, amplification of high moments of prope
derivatives due to length scale reduction by turbulent edd
is considered. Assume an initially linear scalar profile, g
dient G, extending a distanceL in the gradient direction.
Suppose that a sequence of compressional and rotationa
tions converts this profile into a sawtooth shape consistin
2n11 segments, each of widthL/(2n11) ~thus filling the
original intervalL), with gradients alternating between (2n
11)G and 2(2n11)G. Then the mean value of thej th
derivative moment~taking the directional derivative paralle
to the imposed gradient! is @1/(2n11)#@(2n11)G# j for j
odd. For j >3, it is clear from this result that length sca
reduction can amplify the chosen measure of small scale
isotropy despite the fact that rotational motions that flip
sign of the directional derivative result in sign cancellati
over most of the domain.~In this example,n positive-slope
contributions are cancelled by then equal-and-opposite
negative-slope regions. The non-null outcome is due to
one additional positive-slope region.!

The example suggests that it may be straightforward
estimate measures of small scale anisotropy by using w
established scaling laws of inertial-range turbulence to qu
tify the distribution of scales. However, high moments
property derivatives are sensitive to rare occurrences of
treme length scale reduction, so inertial-range scaling la
that govern typical behavior may not contain the needed
formation.

A further complication is the collective behavior induce
by the coupling between advective and dissipative proces
Though dissipative processes are ostensibly irrelevant in
inertial range, measurements and numerical simulations i
cate that turbulence and other multiscale advection-diffus
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processes induce steplike profiles of properties that are
ject to imposed large scale gradients@5#. Apparently, local-
ized episodes of intense mixing homogenize some fluid
gions sufficiently to expel the imposed gradient into the ga
between regions of intense mixing. The physics and the
tistics of this mechanism of gradient concentration and a
plification are not well understood. This precludes fir
principles analysis of the origin and properties of small sc
anisotropy.

An important feature of observed anisotropy is its co
formance to scaling. Namely, measures of anisotropy exh
power-law parameter dependencies that imply the absenc
a distinguished length scale other than the turbulence inte
scaleL and a dissipative cutoffl. Accordingly, power-law
scalings are assumed in the model proposed here.

II. MODELING APPROACH

Nonvanishing odd-order inertial-range structure functio
and odd derivative moments at high Reynolds number~Re!
indicate the persistence of anisotropy at scales far belowL.
Here, these two statistical measures of anisotropy are in
preted as manifestations of a single underlying mechanis

A model of the statistical properties of a one-dimensio
~1D! profile of an advected property~velocity, passive scalar
etc.! in the direction of the imposed gradient is formulated
follows. As an idealization, the high-gradient regions of t
profile are represented as a collection of individual zon
each of which is characterized by a sizer and a property
differenceA across the zone. The property derivative with
the zone is estimated asA/r , which neglects the possibl
influence of fine structure within the zone.

A may be positive or negative, and as indicated by
illustrative example, the tendency of vortical motions to i
duce isotropy implies a nearly symmetric distribution ofA
values. The asymmetry due to the imposed gradient~here
assumed positive! is represented here as a greater num
density of positive-A zones than negative-A zones.

The following simplifying assumptions are introduce
First, the magnitude ofA is taken to be the same for a
high-gradient zones of sizer, and a dependence

uA~r !u5CGL~r /L !sh~r /l! ~2.1!
©2001 The American Physical Society06-1
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is assumed. The exponents and the coefficientC are model
parameters,G is the imposed property gradient, which is a
imposed shear in the experiments that are compared to
model, andh is a cutoff function that vanishes for sma
values of its argument and asymptotes to unity for large v
ues of its argument. It is therefore included in estimates
volving A only whenr of order l is considered. The dissi
pation scalel that is applicable to high-gradient zones is n
the same as the Kolmogorov microscaleh. ~The two scales
are compared quantitatively in Sec. V.! uA(L)u is not required
to equalGL becauseA characterizes special subregions
the flow rather than the entire flow. ThereforeC need not be
equal to unity. Second, if the fraction of the 1D profile that
covered by zones in the size range@r ,r 1dr# is denoted
f 1(r )dr for positiveA and f 2(r )dr for negativeA, then the
differencef [ f 12 f 2 is assumed to be non-negative for alr
and to obey the scaling

f ~r !;~1/L !~r /L !p ~2.2!

for l,r ,L.
The Re dependence ofl will be analyzed in order to

determine the Re dependence of derivative moments.
this purpose, an additional modeling assumption is nee
as follows.

A time scalet is associated with high-gradient zones
size r, based on the assumed relation

t5T~r /L !q, ~2.3!

whereT is a large eddy time scale. For a homogeneous sh
flow with an imposed velocity gradientG, T is inversely
proportional toG. The time scalet represents the formatio
time of size-r zones. A balance betweent and the time scales
of processes that dissipate high-gradient zones is used t
timatel in Sec. IV.

For present purposes, these assumptions define the
structure and evolution of high-gradient zones.~Some addi-
tional assumptions are introduced in the analyses of struc
functions and derivative moments.! The model, which in-
volves three unknown exponentsp, q, ands as well as sev-
eral multiplicative coefficients, does not address the diffic
question of the physics determining their values. Rather,
present goal is to determine the relationships between t
parameters and statistical measures of anisotropy, the
providing a framework for physical interpretation of expe
mental results.

III. STRUCTURE FUNCTIONS

The inertial-range scalings of odd-order structure fu
tions are analyzed based on the foregoing assumptions.
cifically, the transverse structure functions

D j~R!5^@u~y1R!2u~y!# j& ~3.1!

are considered, wherey is the coordinate parallel to the im
posed mean shear andu is the velocity component normal t
y to which the shear is applied. The analysis is likew
applicable to structure functions of a passive scalar.
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It is assumed that high-gradient zones, as defined h
dominate the scaling of the structure functions of intere
The zone-size subrangesr ,R and r .R are considered in-
dividually.

It is assumed that any high-gradient zone of sizer ,R that
is intersected by a size-R line segment is entirely containe
within the segment. The velocity difference across the s
ment, to leading order in scaling, is the sum of the veloc
differences across the high-gradient zones contained in
segment.

For a given zone-size range@r ,r 1dr#, the net contribu-
tion to this velocity difference is estimated asA(r ) times the
expected value of the excess number of positive-A zones in
this size range that are contained in the size-R segment. The
latter quantity isR times the number density (1/r ) f (r )dr.
This gives the net contribution (R/r )A(r ) f (r )dr, which
scales withr as r p1s21dr. Integration of this quantity over
l,r ,R gives a result that is dominated by the larger
~orderR) contribution ifp1s.0 or by the small-r ~orderl)
contribution if p1s,0. Based on the empirical observatio
that D j (R) scales withR rather than a dissipative lengt
scale, it is assumed thatp1s.0. Exponent values deter
mined empirically in Sec. V are consistent with this assum
tion.

It would appear therefore that the subranger ,R contrib-
utes a term of order (R/L) j (p1s11) to the scaling ofD j (R).
In fact, this is an underestimate. The mean value of the
cess number of positive-A order-R zones contained in a size
R segment scales asR f(R);(R/L)p11. Provided thatR
!L andp.21 ~which is required so that thedr integral of
f is finite in the limit of vanishingl), this is much less than
unity. Therefore a distinction must be made between the
frequent occurrence of a positive-A excess, which is the
dominant contribution toD j (R), and the more likely absenc
of an excess, in which case the contribution toD j (R) is
deemed negligible. Accordingly, ther ,R contribution to
D j (R) is estimated asAj (R);(R/L) js times the probability
that a size-R segment contains a greater number of positi
A order-R zones than negative-A order-R zones~specifically
one more, because larger excesses occur with geometri
decreasing probability!. This probability scales asR f(R).
Combining these estimates, ther ,R contribution toD j (R)
is found to be of order (R/L) js1p11, which dominates
(R/L) j (p1s11) for j .1 andp.21.

If the size-R line segment is intersected by a high-gradie
zone of sizer .R, it is assumed that the segment is entire
contained within the size-r zone and that the variation ofu
across the zone is linear. Based on these assumptions
velocity difference across the size-R segment is
(R/r )A(r /L).

For r @R, the probability that the size-R segment inter-
sects~i.e., is contained within! a zone whose width is in the
range@r ,r 1dr# is f 1(r )dr for positiveA and f 2(r )dr for
negative A. The difference between these probabilitie
f (r )dr, is taken to be the probability of a net contribution
the odd-order structure functions by high-gradient zones
the indicated size range.
6-2
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The r .R contribution to the scaling ofD j (R) is, there-
fore, estimated to be of order*R

L(R/r ) jAj (r /L) f (r )dr.
Based on Eqs.~2.1! and ~2.2!, this is proportional to
Cj*R/L

1 (R/r ) j (r /L) js(r /L)p d(r /L). The integral scales
as $1/@ j (s21)1p11#%(R/L) j@12(R/L) j (s21)1p11#. For
s,12@(11p)/ j #, this gives the scaling (R/L) js1p11, the
same as obtained for ther ,R contribution. The exponen
values determined empirically in Sec. V obey this inequa
for j values of interest. If the inequality is not obeyed, th
the amplitude falloff with decreasingr is so fast that the
integral is dominated by order-L zone sizes. The assumptio
of linear variation ofu across a high-gradient zone, and oth
model assumptions, break down at this length scale, so
model is applicable only if the stated equality is obeyed.

It is concluded that the rangesr ,R and r .R obey the
same scaling, which is not surprising because both range
dominated by the order-R contribution. The scaling

D j~R!;Cj~R/L ! js1p11 ~3.2!

is thus obtained. TheCj prefactor is obtained for ther ,R as
well as ther .R contribution, although it was not show
explicitly in the analysis of the caser ,R. The factorGL
appearing in Eq.~2.1! is omitted here because it is assum
to be absorbed in the normalization ofu.

A key simplification in this analysis is the assumption th
all high-gradient zones of given sizer have the same ampli
tude A, given by Eq.~2.1!. The neglected fluctuations ofA
for given r may have significant impact on high-order stru
ture functions. Implications with regard to comparison of t
model to experimental data are discussed in Sec. V.

IV. DERIVATIVE MOMENTS

The Re dependence of odd derivative moments is a
lyzed. To introduce Re effects, the dissipative cutoff scall
is estimated by comparing the time scalet of Eq. ~2.3! to the
time scales of processes that may break down or dissi
high-gradient zones. Two such processes are conside
eddy diffusivity ~governed by Kolmogorov scaling! and vis-
cous dissipation.

Kolmogorov scaling impliesr 2/3 dependence of the edd
time scale on the eddy sizer. Therefore, eddy breakdow
either suppresses the small scale events entirely~if q, 2

3 ) or
is too slow to affect them at all~if q. 2

3 ). The latter is the
physically interesting case in the present context. The
plied constraint,q. 2

3 , is discussed with regard to exper
mental results in Sec. V.

In view of the irrelevance of eddy breakdown in the r
gime of interest,l is determined by invoking the diffusive
scaling l2;nt;nT(l/L)q. Henceforth, lengths and time
are scaled byL and T respectively, so in scaled units,n
5Re21, giving

l;Re21/~22q!. ~4.1!

The singularity atq52 reflects the absence of a balan
mechanism forq>2 because length scale reduction outru
viscous dissipation for allr ,1.
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For q50, the familiar Taylor-microscale scaling is reco
ered. This scaling is not relevant to the present situation
to the restrictionq. 2

3 . The present physical picture is thu
fundamentally different from the anisotropy analysis
Gonzalez@4#, who postulates that the Taylor microscale
the cutoff scale for high-gradient events.

The j th derivative moment is estimated by multiplyin
the j th power of the derivativeA(r )/r by the measure
f (r )dr of the excess positive-A contribution and integrating
over l,r ,1, giving

mj;l j (s21)1p11;Re@ j ~12s!2p21#/~22q!. ~4.2!

Owing to the dominance of the dissipation scale contribut
to the integral, and the influence of the cutoff functionh in
Eq. ~2.1! at that scale, thej dependence of the coefficient o
Re in this scaling cannot be deduced. As noted in Sec. III,
model is valid only if j (s21)1p11,0.

The normalized moments of interest arenj[mj /m2
j /2 . To

evaluate these, it is necessary to determine whether
anomalous scaling, Eq.~4.2!, dominates the conventiona
scaling for j 52, which ism2;Re. The conventional scaling
dominates ifq,11p12s.

Evaluation ofp, q, ands based on comparison to measur
ments~Sec. V! indicates that the conventional scaling dom
nates, consistent with the measured Re dependence ofm2.
Therefore, the final result is

nj;Re[ 2(p11)/(22q)] 1[( j /2)(q22s)/(22q)] . ~4.3!

V. COMPARISON TO MEASUREMENTS

The experimental observation that motivates the introd
tion of the amplitude factorA is the dependence of the odd
order inertial-range structure-function exponents on mom
order j. Equation~3.2! allows linear dependence onj. Mea-
surements indicate slower-than-linear increase of the ex
nents as a function ofj @1#. The measured departure from
linearity may not be statistically significant, but exponen
for even and oddj appear to fall on a single curve@2#, in
which case the well-established sublinearity for evenj ap-
plies also to oddj. The departure from linearity is slight, s
the available odd-order data can be used to determine
model exponents that controls thej dependence of the
structure-function exponents. Based on the measured@1# ex-
ponent values 1.1, 1.5, and 1.8 forj 53, 5, and 7, respec
tively, s50.2 is a reasonable choice.

To within experimental precision, measured derivati
moments exhibit linear dependence of the exponent of R
Eq. ~4.3! on moment orderj @1#. Based on the choices
50.2, the value ofq that best matches the measur
moment-order dependence is 0.75.

With these choices,p can be chosen to match the exp
nent sequence for either the structure functions or
derivative-moment Re dependencies. The latter is chosen
cause the structure-function analysis involves more sign
cant omissions of physically relevant processes than does
derivative-moment analysis. On this basis,p is assigned the
value20.15. This choice satisfies the conditionp1s.0 in-
6-3
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ALAN R. KERSTEIN PHYSICAL REVIEW E 64 036306
voked in the structure-function analysis in Sec. III.
For these parameter values, the model givesRl exponent

values20.52, 0.04, and 0.60 for derivative-moment ord
j 53, 5, and 7, respectively. Exponents representing the
pendence onRl5Re1/2 are given because the experimen
results are parameterized byRl . The corresponding mea
sured exponent values are20.52, 20.02, and 0.63@1#. The
good agreement reflects the adjustment ofp andq to match
the linear dependence of the exponent sequence onj.

For these parameter values, the predicted struct
function exponents forj 53, 5, and 7 are 1.45, 1.85, an
2.25, respectively. The corresponding measured values
1.1, 1.5, and 1.8. Physical mechanisms omitted from
model that may account for the difference between predic
and measured values are discussed in Sec. III. Forj 53 and
5, the predicted exponents exceed the valuesj /3 that corre-
spond to inertial-range cascade scaling with no intermitten
The predicted values, therefore, correspond to intermitte
that is decreasing rather than increasing with decrea
length scale.

Clearly, the model is not a quantitatively accurate rep
sentation of small scale fluctuation mechanisms. The mo
may be more accurate in principle for derivative mome
than for structure functions due to the local nature of
former, in contrast to the nonlocal nature of the latter. Ho
ever, the structure-function analysis has been used to obt
quantity that affects the derivative-moment scaling ex
nents, so quantitative inferences based on these expon
are likewise problematic. Quantitative implications of the
ferred exponent values, though tentative for this reason,
nevertheless examined in order to provide a baseline for
ture investigation and refinement.

In Sec. IV, it is noted thatq. 2
3 is required so that eddy

breakdown does not suppress the formation of high-grad
zones, andq,11p12s is required to match the experimen
tally observed scaling ofm2. For the empirically determined
values ofp ands, this impliesq,1.25. The empirical value
q50.75 obeys these constraints. It is interesting to note
this value ofq implies l;Re20.8, which is smaller than the
Kolmogorov microscale scaling Re20.75 by the factor
Re20.05, or Rl

20.1. For experimentally accessibleRl values
~order 103), this factor is about one half. The implication
that the experimental conditions permit a detectable deg
of small scale anisotropy with only a slight deviation fro
Kolmogorov microscale scaling becauseq is close to2

3 . The
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possibility that this deviation may be observable~subject to
measurement imprecision and other intermittency mec
nisms that might cause such a deviation! is an interesting
issue for future investigation.

Equation~3.2! implies multiplicative increase of the am
plitudes of successive odd-order structure functions. Lo
rithmic plots of measured structure functions, compensa
by dividing by the power ofR/L corresponding to the ob
served scaling, indicate that the ratios of successive am
tudes are in fact constant@1#. In contrast, the data in Figs. 1
and 11 of@1# indicate that the normalized derivative-mome
sequencenj , compensated by the power of Re appearing
the right hand side of Eq.~4.3!, does not increase withj by
constant geometric increments. In the present context, th
interpreted as an indication of the influence of the cut
function of Eq.~2.1! on the integration leading to Eq.~4.2!.

Comparison of the model to analogous passive-sc
properties would be a useful additional test. The mo
should be equally applicable to passive-scalar anisotro
though the numerical values of the scaling exponents
multiplicative prefactors are not necessarily the same as
the velocity statistics. Scalar derivative-moment measu
ments, which would provide the clearest test of the mod
do not yet provide the needed resolution of high-order
dependencies@6#.

Apart from the quantitative results and their evident lim
tations, the main conclusion of this study is that simple sc
ing hypotheses concerning the frequency, intensity, and
pidity of processes~of unknown dynamical origin! that
create local high-gradient zones can account for the m
sured Re scalings of odd-order derivative moments, and
vide a framework for further investigation of small scale a
isotropy and related intermittency properties of high-
turbulence. There is an evident conceptual linkage betw
the anisotropic character of derivative moments and struc
functions, but the complex processes controlling structu
function scalings hinder accurate quantification of this lin
age.
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